Hallo,
Aufgabe a) Quotientenkriterium
\( \sum \limits_{n=1}^{\infty} \frac{n^{2}}{3^{n}} \)
\( =\lim \limits_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \quad \) allgernein
\( =\lim \limits_{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{3^{n+1}} \cdot \frac{3^{n}}{n^{2}}\right) \)
\( =\lim \limits_{n \rightarrow \infty}\left(\frac{3^{n}}{3^{n} \cdot 3^{1}} \cdot \frac{(n+1)^{2}}{n^{2}}\right) \)
\( =\frac{1}{3} \lim \limits_{n \rightarrow \infty}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)=\frac{1}{3}<1 \)
konvergiert