Aloha :)
Die Abbildungsmatrix$${_B}M_B=\left(\begin{array}{c}1 & 2\\3 & 4\end{array}\right)$$erwartet rechts Objekte (=Vektoren oder Matrizen) mit Komponenten bezüglich der Standardbasis \(B\) und liefert links (nach der Multiplikation) ebenfalls wieder Objekte mit Komponenten bezüglich der Standardbasis \(B\). Nun ist eine zweite Basis \(B\,'\) agegeben und du sollst die Matrix \({_{B\,'}}M_{B\,'}\) berechnen, die rechts Objekte mit Komponenten bezüglich der Basis \(B\,'\) erwartet und links entsprechend liefert.
Wenn du die Basisvektoren von \(B\,'\) als Spalten in eine Matrix enträgst, bekommst du die Transformationsmatrix, um Koordinaten bezüglich der Basis \(B\,'\) in Koordinaten bezüglich der Basis \(B\) zu transformieren:$${_B}id_{B\,'}=\left(\begin{array}{c}2 & 3\\3 & 4\end{array}\right)$$Damit kannst du die gesuchte Abbildungsmatrix wie folgt zusammenbauen:$${_{B\,'}}M_{B\,'}={_{B\,'}}id_B\cdot{_B}M_B\cdot{_{B}}id_{B\,'}$$Wenn ein Objekt von rechts multipliziert wird, werden zunächst seine Koordinaten von \(B\,'\) nach \(B\) transformiert, dann wirkt die Abbildung \({_B}M_B\) und anschließend wird das Ergebnis von \(B\) nach \(B\,'\) transformiert. Die Matrix \({_{B\,'}}id_B\) fehlt uns noch, sie transformiert von \(B\) nach \(B\,'\), ist also die Inverse zu \({_{B}}id_{B\,'}\):
$${_{B\,'}}M_{B\,'}=\left(\begin{array}{c}2 & 3\\3 & 4\end{array}\right)^{-1}\cdot\left(\begin{array}{c}1 & 2\\3 & 4\end{array}\right)\cdot\left(\begin{array}{c}2 & 3\\3 & 4\end{array}\right)=\left(\begin{array}{c}2 & 3\\3 & 4\end{array}\right)^{-1}\cdot\left(\begin{array}{c}8 & 11\\18 & 25\end{array}\right)$$$$\phantom{{_{B\,'}}M_{B\,'}}=\left(\begin{array}{r}-4 & 3\\3 & -2\end{array}\right)\cdot\left(\begin{array}{c}8 & 11\\18 & 25\end{array}\right)=\left(\begin{array}{r}22 & 31\\-12 & -17\end{array}\right)$$