0 Daumen
223 Aufrufe

Aufgabe:

a) Zeigen Sie eine reguläre Matrix A, welche die Matrizengleichung:
A 2−3A−2E=0 erfüllt,hat die Inverse: A-1 =1/2(A−3E).

b) Geben Sie eine Matrix A ∈R2x2, A≠0 an,mitA2=0.

c) Für A,B ∈R3x3 gilt: |A|=3 und |B| =4. Was ist dann|(1/2 A·3B)T?


Problem/Ansatz:

lösen

Avatar von

1 Antwort

0 Daumen

A ^2−3A−2E=0

A*( A - 3E) = 2E

A *  ( A - 3E)/2  = E

Also ist  ( A - 3E)/2  die Inverse von A

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community