0 Daumen
1,1k Aufrufe

Aufgabe:

Hey ich hänge gerade ewig an einer Aufgabe und finde keinen richtigen Ansatz diese zu lösen:

Die Aufageb Lautet: Bestimme, falls existent, den Grenzwert

von Lim x->0  (1-cos(2x)) / (x*sin(x))

laut wolfram alpha soll der Grenzwert = 2 sein jedoch würde ich gern wissen wie man darauf kommt.

Avatar von

Hallo,

"würde ich gern wissen wie man darauf kommt."

Kennst Du den Satz von l'Hospital? Sollte das nicht der Fall sein, könntest Du die trigonometrischen Funktionen mithilfe ihrer Taylorreihen darstellen.

Gruß

Hey MathePeter,

beim anwenden con L'hospital

bekomme ich dann:

lim x->0 (2 sin(2x)) / (-cos(x))

wodurch ich dann auf den Grenzwert 0/-1 komme welcher sehr wahrscheinlich nicht korrekt ist

3 Antworten

0 Daumen
 
Beste Antwort

Hier nur direkt nur mit dem Satz von L'Hospital:

lim (x → 0) (1 - COS(2·x))/(x·SIN(x))

L'Hospital

= lim (x → 0) (2·SIN(2·x))/(SIN(x) + x·COS(x))

L'Hospital

= lim (x → 0) (4·COS(2·x))/(2·COS(x) - x·SIN(x))

= (4·1)/(2·1 - 0·0) = 4/2 = 2

Avatar von 489 k 🚀
0 Daumen

Nutze den Fakt, dass \(\cos(2x)=1-2\sin^2(x)\).

Avatar von 28 k
0 Daumen

Verwende cos(2x) = 1 - 2sin(x)^2

==> (1-cos(2x)) / (x*sin(x))

 = 1-(1-2sin(x)^2) / (x*sin(x))

= 2 sin(x)^2 / (x*sin(x))   mit sin(x) kürzen

= 2 sin(x) / x

und der GW von sin(x) / x für x gegen 0 ist 1.

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community