Aufgabe:
ich würde gerne wissen wollen, wie man von \( \int \limits_{1}^{2} \frac{1}{3} e^{z}+\frac{1}{2} \log z d z \) auf \( =\left.\right|_{1} ^{2} \frac{1}{3} e^{z}+\frac{1}{2 z} \)
kommt.
Laut meiner Rechnung müsste es sein : 1/3e^z+1/2*z*ln(z)-z (Die Grenzen jetzt nicht beachtet).
Die Stammfunktion von ln(z) lautet ja nach Formel : z * ln(z)-z
Danke
Edit.:
Die Rechnung :
\( \begin{aligned} f(x, y, z)=x^{2} e^{z}+y \log z & \text { auf } Q=[0,1] \times[0,1] \times[1,2] \\ \int \limits_{Q} f(\vec{x}) d \vec{x}=& \int \limits_{1}^{2} \int \limits_{0}^{1} \int \limits_{0}^{1} f(x, y, z) d x d y d z \\=& \int \limits_{1}^{2} \int \limits_{0}^{1}\left(\mid \frac{1}{3} x^{3} e^{z}+x y \log z\right) d y d z \\=& \int \limits_{1}^{2} \int \limits_{0}^{1} \frac{1}{3} e^{z}+y \log z d y d z \\=& \int \limits_{1}^{2} \mid \frac{1}{3} e^{z} y+\frac{1}{2} y^{2} \log z d z \\=& \int \limits_{1}^{2} \frac{1}{3} e^{z}+\frac{1}{2} \log z d z \\=& \mid \frac{1}{3} e^{z}+\frac{1}{2 z}=\frac{1}{3}\left(e^{2}-e\right)+\frac{1}{4}-\frac{1}{2} \end{aligned} \)
In der vorletzten Zeile befindet sich der Fehler.
Sehe ich das richtig ?