Aloha :)
Weil die einzelnen Summanden \(a_k\coloneqq \frac{1}{3}k\) keine Nullfolge bilden, divergiert die Reihe. Konkret gilt:
$$S_n\coloneqq\sum\limits_{k=1}^n\frac{1}{3}k=\frac{1}{3}\sum\limits_{k=1}^n k=\frac{1}{3}\cdot\frac{n^2+n}{2}=\frac{n^2+n}{6}\to\infty$$
Nach Korrektur der Aufgabenstellung entpuppt sich das Problem als geometrische Reihe:$$S_n\coloneqq\sum\limits_{k=1}^n\left(\frac{1}{3}\right)^k=\sum\limits_{k=0}^n\left(\frac{1}{3}\right)^k-1=\frac{1-\left(\frac{1}{3}\right)^{n+1}}{1-\frac{1}{3}}-1$$Der Grenzwert ist daher:$$S_\infty=\frac{1}{1-\frac{1}{3}}-1=\frac{1}{\frac{2}{3}}-1=\frac{3}{2}-1=\frac{1}{2}$$