0 Daumen
653 Aufrufe

Aufgabe:

Seien (X, dX)  und (Y, dY)  metrische Räume und f : X→Y eine Isometrie. Zeige, dass f injektiv ist.


Problem/Ansatz:

Ich glaube das geht ziemlich schnell aber ich komme nicht auf die Lösung

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Für alle \(x_1,x_2\in X\) gilt

        \(\begin{aligned}&x_1\neq x_2\\ \implies& d_X\left(x_1,x_2\right) \neq 0 \\ \implies& d_Y\left(f\left(x_1\right),f\left(x_2\right)\right)\neq 0 \\ \implies& f\left(x_1\right) \neq f\left(x_2\right)\end{aligned}\)

Avatar von 107 k 🚀

Danke für die Antwort

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community