0 Daumen
839 Aufrufe

Aufgabe:

Ich muss 3 Parameter bestimmen. A,B,n

S(t)= (A+B*t) * (e^-n*t)

T 0 1 10

S 2 0 -0,5


Problem/Ansatz:

ich habe A bestimmt, bei B und n bleibe ich hängen.

Avatar von

2 Antworten

0 Daumen

Hallo

ich hoffe du hast A=2

wenn du dann S=0 t=1 einsetzt  steht da (2+B)*e-2=0 e-2≠0 was folgt für B?

dann hast du A und B und setzt  -0,5=(A+10B)*e-10n  du dividierst durch das Ergebnis von (A+10B) und wendest ln an um n zu bestimmen.

Gruß  lul

Avatar von 108 k 🚀

Danke für die Hilfe. Ich verstehe nur noch nicht wie ich auf e^(-2) komme :)?

Hallo

mein Fehler richtig e-n*1

Gruß lul

0 Daumen

Löse das Gleichungssystem

        \(\begin{aligned} 2 & =\left(A+B\cdot0\right)\cdot\mathrm{e}^{-n\cdot0}\\ 0 & =\left(A+B\cdot1\right)\cdot\mathrm{e}^{-n\cdot1}\\ -0\text{,}5 & =\left(A+B\cdot10\right)\cdot\mathrm{e}^{-n\cdot10} \end{aligned}\)

Gleichungsysteme löst man im Allgemeinen wie folgt:

  1. Eine Gleichung nach einer Variablen auflösen.
  2. In alle anderen Gleichungen einsetzen.
  3. Zurück zu 1 falls noch nicht die Werte aller Variablen bekannt sind.
Avatar von 107 k 🚀

Danke für die Hilfe. Soweit bin ich jetzt. A habe ich rausgefunden aber bei b und n komme ich nicht weiter ... :( ich hatte noch kein GS mit einer e Funktion vorher

A habe ich rausgefunden

Dann müsste dein Gleichungssystem jetzt so aussehen:

        \(\begin{aligned} A & =2\\ 0 & =\left(2+B\cdot1\right)\cdot\mathrm{e}^{-n\cdot1}\\ -0\text{,}5 & =\left(2+B\cdot10\right)\cdot\mathrm{e}^{-n\cdot10} \end{aligned}\)

Löse die zweite Gleichung nach \(B\) auf und setze in die dritte Gleichung ein.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community