Aloha :)
Die Winkelfunktionen sind über ein rechtwinkliges Dreieck definiert. Mit der Hypotenuse \(c\), der Gegenkathete \(a\) und der Ankathete \(b\) gilt für den Winkel \(\alpha\):$$\sin\alpha\coloneqq\frac{\text{Gegenkathete}}{\text{Hypotenuse}}=\frac ac\quad;\quad \cos\alpha\coloneqq\frac{\text{Ankathete}}{\text{Hypotenuse}}=\frac bc$$Daher gilt für die Summe der Quadrate:$$\sin^2\alpha+\cos^2\alpha=\frac{a^2}{c^2}+\frac{b^2}{c^2}=\frac{a^2+b^2}{c^2}$$Da das Dreieck rechtwinklig ist, gilt nach Pythagoras:$$a^2+b^2=c^2$$Damit ist dann:$$\sin^2\alpha+\cos^2\alpha=1$$