Aufgabe:
Die Funktionen \( f: \mathbb{R}^{2} \rightarrow \mathbb{R} \) und \( g: \mathbb{R}^{2} \rightarrow \mathbb{R} \) seien definiert durch
\( \begin{aligned} f\left(x_{1}, x_{2}\right) &:=\frac{1}{3} x_{2}^{3}+\frac{1}{2} x_{1}^{2}-\frac{3}{2} x_{2}^{2}-x_{1}+2 x_{2}+4 \\ g\left(x_{1}, x_{2}\right) &:=2 x_{2}-x_{1} \end{aligned} \)
Bestimmen Sie alle lokalen Extremstellen von \( f \) unter der Nebenbedingung \( g(x)=0 \), d. h. finden Sie alle lokalen Extremstellen von \( f \) auf der Menge \( M:=\left\{x \in \mathbb{R}^{2}: g(x)=0\right\} \).