Stammfunktion von \(F(x)=5*x^{2}*ln(x)\)
partielle Integration:
\( \int\limits_{}^{} 5*x^{2}*ln(x)*dx\)
\(u´=5*x^{2}→u=\frac{5}{3}*x^{3}\)
\(v=ln(x)→v´=\frac{1}{x}\)
\( \int\limits_{}^{} 5*x^{2}*ln(x)*dx=\frac{5}{3}*x^{3}*ln(x)\)-\(\int\limits_{}^{} \frac{1}{x}*\frac{5}{3}*x^{3}*dx\)
\( \int\limits_{}^{} 5*x^{2}*ln(x)*dx=\frac{5}{3}*x^{3}*ln(x)-\int\limits_{}^{} \frac{5}{3}*x^{2}*dx\)
\( \int\limits_{}^{} 5*x^{2}*ln(x)*dx=\frac{5}{3}*x^{3}*ln(x)-\frac{5}{9}*x^{3}+C\)
\( \int\limits_{}^{} 5*x^{2}*ln(x)*dx=\frac{5}{9}x^{3}*(3*ln(x)-1)+C\)