Aloha :)
$$\vec x_g=\begin{pmatrix}1\\1\\1\end{pmatrix}+s\begin{pmatrix}-3\\0\\2\end{pmatrix}=\begin{pmatrix}1-3s\\1\\1+2s\end{pmatrix}\;;\;\vec x_h=\begin{pmatrix}6\\6\\18\end{pmatrix}+r\begin{pmatrix}3\\-4\\1\end{pmatrix}=\begin{pmatrix}6+3r\\6-4r\\18+r\end{pmatrix}$$
Als allgemeinen Verbindungsvektor beider Geraden haben wir damit:$$\vec d=\vec x_h-\vec x_g=\begin{pmatrix}6+3r\\6-4r\\18+r\end{pmatrix}-\begin{pmatrix}1-3s\\1\\1+2s\end{pmatrix}=\begin{pmatrix}5+3r+3s\\5-4r\\17+r-2s\end{pmatrix}$$
Der minimale Verbdindungsvektor steht auf beiden Geraden senkrecht:$$0\stackrel!=\vec d\cdot\begin{pmatrix}-3\\0\\2\end{pmatrix}=-7r-13s+19\implies 7r+13s=19$$$$0\stackrel!=\vec d\cdot\begin{pmatrix}3\\-4\\1\end{pmatrix}=26r+7s+12\;\;\;\implies 26r+7s=-12$$Die Lösung dieses kleinen Gleichungssystems ist \(r=-1\) und \(s=2\).
Das liefert die Lotfußpunkte \(L_g(-5|1|5)\) und \(L_h(3|10|17)\).
Ihr Abstand beträgt:$$d_{\text{min}}=\sqrt{(3-(-5))^2+(10-1)^2-(17-5)^2}=\sqrt{289}=17$$
Damit ist dein Ergebnis bestätigt\(\quad\checkmark\)