Aloha :)
Es soll \(\pink4\)-mal verzinst werden:$$\left(1+\frac{1}{\pink{4}}\cdot\frac{p}{100}\right)^{\pink4}\stackrel!=1,04\quad\bigg|\sqrt[\pink{4}]{\cdots}$$$$1+\frac{1}{\pink{4}}\cdot\frac{p}{100}=\sqrt[\pink{4}]{1,04}\quad\bigg|-1$$$$\frac{1}{\pink{\pink{4}}}\cdot\frac{p}{100}=\sqrt[\pink{4}]{1,04}-1\quad\bigg|\cdot400$$$$p=400\cdot\left(\sqrt[4]{1,04}-1\right)\approx3,941363$$
Der nominelle Jahreszins müsste also \(3,94\%\) betragen.