0 Daumen
731 Aufrufe

Aufgabe:

entscheiden sie, ob eine obere/untere Beschränktheit vorliegt

x, rationale Zahl und x3 + x2 < 5+5

((x-2)(x+2))/(x+1)(x-1)) für x zwischen minus/plus 1


Problem/Ansatz

Ich komme bei diesen Aufgaben nicht weiter, kann mir jemand vielleicht einen Tipp geben?

Avatar von
x3 + x2 < 5+5

wie soll man das verstehen? Vielleicht \(x^3+x^2 \lt 10\)?

Ja das wäre im Prinzip die erste Umformung

1 Antwort

0 Daumen

Also geht es um die Menge  {x∈ℚ | \(x^3+x^2 \lt 10\) }.

Dabei kann man die Bedingung noch umformen zu  \(x^2(x+1) \lt 10\)

Der zugehörige Funktionsgraph sieht so aus ~plot~ x^2(x+1) ~plot~

Also ist die Menge nach oben beschränkt, z.B. ist 2 eine obere Schranke.

Nach unten aber nicht, da für x gegen -∞ auch x^2(x+1) gegen -∞ geht.

((x-2)(x+2))/(x+1)(x-1)) für x zwischen minus/plus 1

Funktionsgraph : ~plot~ ((x-2)(x+2))/((x+1)(x-1)) ~plot~

Nach oben beschränkt unbeschränkt, nach unten z.B. durch 4.

Avatar von 289 k 🚀

würde sich etwas ändern wenn x eine Teilmenge der reelen Zahlen wäre?

Bei dem ersten wäre es unbeschränkt

und bei dem zweiten nach oben beschränkt durch 1

und nach unten unbeschränkt.

Vielen Dank. Eine kleine Frage hätte ich noch

Wieso wäre es bei den reelen Zahlen unbeschränkt wenn es immer unter 10 bleiben muss?

War falsch. Nach oben beschränkt z b durch 2

nach oben beschränkt durch 1
Nach oben beschränkt z b durch 2

Und wenn du den Wert noch so weit erhöhst ..

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community