Für genügend großes n gilt doch
k=0∑n(2k−4k+1+2k+2)
=k=0∑n2k−k=0∑n4k+1+k=0∑n2k+2
=k=0∑n2k−k=1∑n+14k+k=2∑n+22k
=2+k=2∑n2k−4−k=2∑n4k−4n+1+k=2∑n2k+2n+1+2n+2
=2−4−4n+1+2n+1+2n+2+k=2∑n2k−k=2∑n4k+k=2∑n2k
=2−4−4n+1+2n+1+2n+2+k=2∑n(2k−4k+2k)
=2−4−4n+1+2n+1+2n+2
=−2−2n+1+2n+2