a)
\( \left(2 \cdot\left[\begin{array}{rrr}2 & 3 & 0 \\ -1 & 5 & 2\end{array}\right]+\left[\begin{array}{ccc}0 & 4 & 0 \\ 2 & 1 & -1\end{array}\right]\right) \cdot\left[\begin{array}{cc}3 & -3 \\ -1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -2 \\ -11 & 14\end{array}\right] \)
b)
\( 2 \cdot\left[\begin{array}{rr}3 & -3 \\ -1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}0 & 4 & 0 \\ 2 & 1 & -1\end{array}\right]=\left[\begin{array}{ccc}-12 & 18 & 6 \\ 4 & -6 & -2 \\ 4 & 2 & -2\end{array}\right] \)
c)
\( \left[\begin{array}{rrr}2 & 3 & 0 \\ -1 & 5 & 2\end{array}\right] \cdot\left[\begin{array}{rr}3 & -3 \\ -1 & 1 \\ 0 & 1\end{array}\right]-\left[\begin{array}{rr}3 & -3 \\ -1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}2 & 3 & 0 \\ -1 & 5 & 2\end{array}\right]=\left[\begin{array}{rrr}-9 & 6 & 6 \\ 3 & -2 & -2 \\ 1 & -5 & -2\end{array}\right]+\left[\begin{array}{rr}3 & -3 \\ -8 & 10\end{array}\right] \)