\(f(x)= -2x^2 -2x +4\) \(g(x)= 5x^2 +3x\) \(f(x)<g(x)\) → \(g(x)>f(x)\)
Lösungsweg, falls Rechnung verlangt ist:
\( 5x^2 +3x> -2x^2 -2x +4 |+ 2x^2 +2x\)
\( 5x^2 + 2x^2 +2x+3x> 4 \)
\( 7x^2+5x> 4 |:7\)
\( x^2+\frac{5}{7}x+(\frac{5}{14})^2> \frac{4}{7}+(\frac{5}{14})^2\)
\( x^2+\frac{5}{7}x+\frac{25}{196}> \frac{4}{7}+\frac{25}{196}\)
\( (x+\frac{5}{14})^2> \frac{112}{196}+\frac{25}{196}=\frac{137}{196} | \pm\sqrt{~~}\)
1.)
\( x+\frac{5}{14}>\frac{\sqrt{137}}{14} \)
\( x_1>-\frac{5}{14}+\frac{\sqrt{137}}{14}≈0,5 \)
2.)
\( x+\frac{5}{14}<-\frac{\sqrt{137}}{14} \)
\( x<-\frac{5}{14}-\frac{\sqrt{137}}{14} ≈-1,2\)