Neben meinem Lösungansatz gibt es auch die Möglichkeit das ganze über quadratische Ergänzung zu lösen.
Wolfram-Alpha liefert dir eine komplette Step bei Step Lösung. Ich habe sie hier einfach mal kopiert falls du keinen Account bei Wolfram-Alpha hast.
https://www.wolframalpha.com/input/?i=2iz%5E2-%288%2B4i%29z-%288%2B18i%29%3D0
Solve for z:
(4 i-9)-(-(4 i)+2) z+z^2 = 0
Solve the quadratic equation by completing the square.
Subtract -9+4 i from both sides:
(4 i-2) z+z^2 = -4 i+9
Take one half of the coefficient of z and square it, then add it to both sides.
Add -3-4 i to both sides:
(-4 i-3)+(4 i-2) z+z^2 = -8 i+6
Factor the left hand side.
Write the left hand side as a square:
(2 i-1+z)^2 = -8 i+6
Eliminate the exponent on the left hand side.
Take the square root of both sides:
(2 i-1)+z = sqrt(-8 i+6) or (2 i-1)+z = -sqrt(-8 i+6)
Express 6-8 i as a square using 6-8 i = -(8 i)+2 i^2+8, then factor.
6-8 i = -8 i-2+8 = -(8 i)+2 i^2+8 = 2×2 sqrt(2)×-i sqrt(2)+(-i sqrt(2))^2+(2 sqrt(2))^2 = (2 sqrt(2)-i sqrt(2))^2:(2 i-1)+z = 2 sqrt(2)-i sqrt(2) or (2 i-1)+z = -2 sqrt(2)-i sqrt(2)
Look at the first equation: Solve for z.
Subtract -1+2 i from both sides:
z = (-2 i+1)+sqrt(2) (-i+2) or (2 i-1)+z = -(2 sqrt(2)-i sqrt(2))
Look at the second equation: Solve for z.
Subtract -1+2 i from both sides:
Answer: | |
z = (1-2 i)+(2-i) sqrt(2) or z = (-2 i+1)+sqrt(2) (i-2)