0 Daumen
566 Aufrufe

Hallo ich muss den Wert des Linienintegrals längs der geraden y=x berechnen und ich hab irgendwie kein Ansatz

 ∫(0,0)(1,1)  [(1-y^2)/(1+x)^3 dx + y/(1+x)^2 dy]


für hilfe wäre ich dankbar.

Avatar von

1 Antwort

0 Daumen

die Integrabilitätsbedingungen sind erfüllt, also existiert ein Potential U,

so dass ∫(0,0) bis (1,1) f(x,y)*(dx,dy) =U(1,1)-U(0,0)

Wenn man integriert bekommt man

U(x,y)=(y^2-1)/(2(x+1)^2)

U(1,1)-U(0,0)=0-(-1/8)=1/8

Avatar von 37 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community