0 Daumen
12k Aufrufe

Beweisen Sie, dass √3 keine rationale Zahl ist.

Avatar von

2 Antworten

+1 Daumen

Indirekter Beweis: Wir nehmen an es gäbe einen gekürzten Bruch mit natürlichen Zahlen p und q, sodass √3=p/q. Dann ist 3=(p2)/(q2) und daher (1) p2=3q2. Dann aber ist p durch 3 teilbar also (2) p=3n für eine natürliche Zahl n. (2) in (1) eingesetzt: 9n2=3q2oder 3n2=q2. Dann allerdings ist auch q durch 3 teilbar. Das ist ein Widerspruch zu der Annahme p/q sei vollständig gekürzt. Damit ist die Annahme falsch und ihr Gegenteil richtig. p/q ist nicht rational, also irrational.

Avatar von 123 k 🚀
0 Daumen

Das Funktioniert ähnlich wie der Beweis das Wurzel 2 irrational ist




Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community