Aufgabe.
Sei V ein K-Vektorraum. Zeigen oder widerlegen Sie: (i) Ein einzelner Vektor v ∈ V ist linear unabhängig genau dann, wenn v ̸= 0.
(ii) Sind v1, v2 ∈ V linear abhängig, so existiert v ∈ V mit v1, v2 ∈ ⟨v⟩.
(iii) Sind v1, v2, v3 ∈ V paarweise linear unabhängig, so auch v1, v2, v3.
(iv) Sind v1, v2 ∈ V und v2, v3 ∈ V linear abhängig, so auch v1, v3, falls v2 ̸= 0.
(v) Sind v1,...,vn ∈ V linear unabhängig, so bilden sei eine Basis von ⟨v1,...,vn⟩.