Aloha :)
Erwartungswert und Varianz der binomialverteilten Zufallsgröße \(X\) sind klar:$$\left<X\right>=n\cdot p=80\quad;\quad\operatorname{Var}(X)=n\cdot p\cdot(1-p)=16$$
Wenn man eine Konstante zu \(X\) addiert, ändert sich die Varianz nicht, weil bei der Konstanten ja nix variiert, d.h.$$\operatorname{Var}(6+X)=\operatorname{Var}(X)=16$$
Für die Zufallsvariable \(Y\) finden wir:$$\left<Y^2\right>=0^2\cdot0,6+(-3)^2\cdot0,1+3^2\cdot0,3=9\cdot0,4=3,6$$
Damit haben wir nun:$$\left<-3+X+Y^2\right>+\operatorname{Var}(6+X)=-3+80+3,6+16=96,6$$
Du siehst, ich habe dasselbe raus wie du... Du hast keinen Fehler drin.