f(x) = x^4
f'(x) = lim (h → 0) (f(x + h) - f(x)) / h
f'(x) = lim (h → 0) ((x + h)^4 - (x)^4) / h
Benutze den Binomischen Satz: (a + b)^4 = a^4 + 4·a^3·b + 6·a^2·b^2 + 4·a·b^3 + b^4
f'(x) = lim (h → 0) (x^4 + 4·x^3·h + 6·x^2·h^2 + 4·x·h^3 + h^4 - x^4) / h
f'(x) = lim (h → 0) (4·x^3·h + 6·x^2·h^2 + 4·x·h^3 + h^4) / h
f'(x) = lim (h → 0) 4·x^3 + 6·x^2·h + 4·x·h^2 + h^3 = 4·x^3
f'(2) = 4·2^3 = 32