Spiele 1 sollte durchgängig auf 2€ Wetten, weil der erwartete Gewinn größer ist, als wenn er auf 1€ wettet.
Das ist der Schluss daraus aus allen möglichen Ergeignissen abhängig von den Spieler-Entscheidungen.
Prinzip hinter Optimierungen in der Spielstrategie ist, dass man jeweils für eine Seite betrachtet, welche Entscheidungsmöglichkeit sinnvoller wäre zu wählen, wenn man nicht weiß, wie die andere Person sich entscheidet.
Wir betrachten also Spieler 1:
- Spieler 1 kann 1 € setzen
Jetzt gibt es zwei Möglichkeiten, die gleich wahrscheinlich sind:
=> Spieler 2 setzt 1€: Spieler 1 gewinnt 1€ (50%)
=> Spieler 2 setzt 2€: Spieler 1 verliert 1,5€ (50%)
-Spieler 1 kann 2 € setzen
Wieder zwei Möglichkeiten mit gleicher Wkeit:
=> Spieler 2 setzt 1€: Spieler 1 verliert 1,5€ (50%)
=> Spieler 2 setzt 2€: Spieler 1 gewinnt 2€ (50%)
Und jetzt kommt erst der Entschluss:
Spieler 1 sollte möglichst immer 2€ wählen, weil hier der erwartete Gewinn größer ist. Und das ist die Spielstrategie, die den Gewinn für Spieler 1 optimiert.
Es ist eine Grundannahme, dass wir die Strategie des Gegenspielers nicht kennen und jede Option als gleichwahrscheinlich ansehen.
EDIT:
Auf der anderen Seite, optimiert dann natürlich Spieler 2 den Gewinn, indem immer 1€ gesetzt wird.
Logischerweise steckt da in der Praxis noch eine ganze Menge Psychologie hinter.