Aloha :)
Wenn wir den Winkel bei Punkt \(B\) als \(\beta\) bezeichnen, gilt:
$$\sin\alpha=\frac{\text{Gegenkathete}}{\text{Hypotenuse}}=\frac{\overline{AB}}{1}\quad;\quad\cos\beta=\frac{\text{Ankathete}}{\text{Hypotenuse}}=\frac{\overline{AB}}{1}$$Also ist \(\sin\alpha=\cos\beta\). Allerdings ist die Summe beider Winkel \(\alpha+\beta=90^\circ\), also gilt:$$\sin\alpha=\cos\beta=\cos(90^\circ-\alpha)$$
Für den Cosinus können wir genauso argumentieren:
$$\cos\alpha=\frac{\text{Ankathete}}{\text{Hypotenuse}}=\frac{\overline{OA}}{1}\quad;\quad\sin\beta=\frac{\text{Gegenkathete}}{\text{Hypotenuse}}=\frac{\overline{OA}}{1}$$Also ist \(\cos\alpha=\sin\beta\). Allerdings ist die Summe beider Winkel \(\alpha+\beta=90^\circ\), also gilt:$$\cos\alpha=\sin\beta=\sin(90^\circ-\alpha)$$
Hieran sieht mat übrigens sehr schön, wo die "Co"-Funktionen ihren Namen her haben. Sie heißen so, weil man im rechtwinkligen Dreieck zum complementären Winkel übergeht (also dem anderen Nicht-90-Grad-Winkel):
$$\sin\alpha=\cos(90^\circ -\alpha)$$$$\cos\alpha=\sin(90^\circ -\alpha)$$$$\tan\alpha=\cot(90^\circ -\alpha)$$$$\cot\alpha=\tan(90^\circ -\alpha)$$