Aufgabe:
Ein Kredit der Höhe a sei mit jährlichen Zinsen von z% und einer jährlichen Rückzahlungsrate b Versehen. Ermitteln Sie eine Formel für den Schuldenstand an am Ende des n-ten Jahres mit Hilfe der Formel für die geometrische Reihe.
Problem/Ansatz:
\( \begin{array}{l} a_{n}=a_{1} q-b_{1} a_{2} q-b_{1} \ldots a_{n}-b \\ =a_{1}\left(1+\frac{z}{100}\right)-b, a_{2}\left(1+\frac{z}{100}\right)-b_{1} \ldots a_{n}\left(1+\frac{z}{100}\right)-b \\ \sum \limits_{k=1}^{n} a_{k}\left(1+\frac{z}{10_{0}}\right)\end{array} \)
Leider komme ich nicht weiter:(