Da ist doch ein Hinweis mit
\(\scriptsize A \, := \, \left(\begin{array}{rrr}-x&0&0\\0&-x&0\\0&0&-x\\\end{array}\right) \\ B \, := \, \left(\begin{array}{rrr}1&0&1\\0&1&1\\1&1&0\\\end{array}\right)\)
und
\(\small det(M)= det(A^2-B^2)= det\left(\begin{array}{rrr}x^{2} - 2&-1&-1\\-1&x^{2} - 2&-1\\-1&-1&x^{2} - 2\\\end{array}\right)\)
{{x² - 2, -1, -1}+(x²-2){-1, -1, x² - 2}+{-1, x² - 2, -1}-{-1, -1, x² - 2},
{-1, x² - 2, -1}-{-1, -1, x² - 2},
{-1, -1, x² - 2}}
===>
\(\small \left|\begin{array}{rrr}0&0&x^{4} - 5 \; x^{2} + 4\\0&x^{2} - 1&-x^{2} + 1\\-1&-1&x^{2} - 2\\\end{array}\right|\)
===>
(x²-1)(x^4 - 5x² + 4 ) = (x²-1)(x - 2) (x - 1) (x + 1) (x + 2)