0 Daumen
386 Aufrufe

Aufgabe:


Problem/Ansatz:

Hallo .. Wie bestimme ich bei komplexen zahlen die winkel in den verschiedenen quadranten , wann addiere ich pi wann subtrahiere ich es?

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

Aloha :)

Für \(z=x+iy\) ist der Winkel \(\varphi\) in Polardarstellung wie folgt:

$$\varphi=\left\{\begin{array}{l}\arctan\left(\frac{y}{x}\right) & falls & x>0\\\arctan\left(\frac{y}{x}\right)+\pi & falls & x<0\;,\;y>0\\\arctan\left(\frac{y}{x}\right)-\pi & falls & x<0\;,\;y<0\end{array}\right.$$Aber wichtig, auf die Spezialfälle \(x=0\) und \(y=0\) achten ;)

Avatar von 152 k 🚀

Was Msch ich beim 4. Quadranten

Beim 4-ten Quadranten ist \(x>0\), das ist der erste Fall :)

0 Daumen

Schau mal unter

https://de.wikipedia.org/wiki/Komplexe_Zahl#Umrechnungsformeln

Dort steht alles was du wissen musst.

blob.png
Avatar von 487 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community